k13tiumb

Senin, 19 Oktober 2009

TUGAS KIMIA INDUSTRI

Stoikiometri
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Dalam ilmu kimia, stoikiometri (kadang disebut stoikiometri reaksi untuk membedakannya dari stoikiometri komposisi) adalah ilmu yang mempelajari dan menghitung hubungan kuantitatif dari reaktan dan produk dalam reaksi kimia (persamaan kimia). Kata ini berasal dari bahasa Yunani stoikheion (elemen) dan metriā (ukuran).
Contoh:



MARTIN (41609010051)


Penemuan elektron
Kata Kunci: Arrhenius, atom, dalton, elektrolisis, elektron, Faraday, thomson, volta
Ditulis oleh Yoshito Takeuchi pada 01-03-2008
Kemajuan yang sangat pesat dalam sains paruh pertama abad 20 ditandai dengan perkembangan paralel teori dan percobaan. Sungguh menakjubkan mengikuti perkembangan saintifik sebab kita dapat dengan jelas melihat dengan jelas berbagai lompatan perkembangan ini. Sungguh kemajuan dari penemuan elektron, sampai teori kuantum Planck, sampai penemuan inti atom Rutherford, teori Bohr, sampai dikenalkan teori mekanika kuantum merangsang kepuasan intelektual. Dalam kimia penemuan ide umum orbital dan konfigurasi elektron memiliki signifaksi khusus. Ide-ide ini dapat dianggap sebagai baik modernisasi dan pelengkapan teori atom.
2.1 Penemuan elektron
Menurut Dalton dan ilmuwan sebelumnya, atom tak terbagi, dan merupakan komponen mikroskopik utama materi. Jadi, tidak ada seorangpun ilmuwan sebelum abad 19 menganggap atom memiliki struktur, atau dengan kata lain, atom juga memiliki konponen yang lebih kecil. Keyakinan bahwa atom tak terbagi mulai goyah akibat perkembangan pengetahuan hubungan materi dan kelistrikan yang berkembang lebih lanjut. Anda dapat mempelajari perkembangan kronologis pemahaman hubungan antara materi dan listrik.
Tabel 2.1 Kemajuan pemahaman hubungan materi dan listrik.
Tahun Peristiwa
1800 Penemuan baterai (Volta)
1807 isolasi Na dan Ca dengan elektrolisis (Davy)

1833 Penemuan hukum elektrolisis (Faraday)
1859 Penemuan sinar katoda (Plücker)
1874 Penamaan elektron (Stoney)
1887 Teori ionisasi (Arrhenius)
1895 Penemuan sinar-X (Röntgen)
1897 Bukti keberadaan elektron (Thomson)
1899 Penentuan e/m (Thomson)
1909-13 Percobaan tetes minyak (Millikan)
Faraday memberikan kontribusi yang sangat penting, ia menemukan bahwa jumlah zat yang dihasilkan di elektroda-elektroda saat elektrolisis (perubahan kimia ketika arus listrik melewat larutan elektrolit) sebanding dengan jumlah arus listrik. Ia juga menemukan di tahun 1833 bahwa jumlah listrik yang diperlukan untuk menghasilkan 1 mol zat di elektroda adalah tetap (96,500 C). Hubungan ini dirangkumkan sebagai hukum elektrolisis Faraday.
Faraday sendiri tidak bermaksud menggabungkan hukum ini dengan teori atom. Namun, kimiawan Irish George Johnstone Stoney (1826-1911) memiliki wawasan sehingga mengenali pentingnya hukum Faraday pada struktur materi; ia menyimpulkan bahwa terdapat satuan dasar dalam elektrolisis, dengan kata lain ada analog atom untuk kelistrikan. Ia memberi nama elektron pada satuan hipotetik ini.
Kemudian muncul penemuan menarik dari percobaan tabung vakum. Bila kation mengenai anoda bila diberikan beda potensial yang tinggi pada tekanan rendah (lebih rendah dari 10-2 – 10-4 Torr)), gas dalam tabung, walaupun merupakan insulator, menjadi penghantar dan memancarkan cahaya. Bila vakumnya ditingkatkan, dindingnya mulai menjadi mengkilap, memancarkan cahaya fluoresensi (Gambar 2.1). Fisikawan Jerman Julius Plücker (1801-1868) berminat pada fenomena ini dan menginterpreatsinya sebagai beikut: beberapa partikel dipancarkan dari katoda. Ia memmebri nama sinar katoda pada partikel yang belum teridentifikasi ini (1859).

Torr adalah satuan tekanan yang sering digunakan untuk mendeskripsikan tingkat vakum. (1 Torr = 133, 3224 Pa)
Patikel yang belum teridentifikasi ini, setelah dipancarakan dari katoda, akan menuju dinding atbung atau anoda. Ditemukan bahwa partikel tersebut bermuatan karena lintasan geraknya akan dibelokkan bila medan magnet diberikan. Lebih lanjut, sifat cahaya tidak bergantung jenis logam yang digunakan dalam tabung katoda, maupun jenis gas dalam tabung pelucut ini. Fakta-fakta ini menyarankan kemungkinan bahwa partikel ini merupakan bahan dasar materi.
Fisikawan Inggris Joseph John Thomson (1856-1940) menunjukkan bahwa partikel ini bermuatan negatif. Ia lebih lanjut menentukan massa dan muatan partikel dengan memperkirakan efek medan magnet dan listrik pada gerakan partikel ini. Ia mendapatkan rasio massa dan muatannya. Untuk mendapatkan nilai absolutnya, salah satu dari dua tersebut harus ditentukan.
Fisikawan Amerika Robert Andrew Millikan (1868-1953) berhasil membuktikan dengan percobaan yang cerdas adanya partikel kelistrikan ini. Percobaan yang disebut dengan percobaan tetes minyak Millikan. Tetesan minyak dalam tabung jatuh akibat pengaruh gravitasi. Bila tetesan minyak memiliki muatan listrik, gerakannya dapat diatur dengan melawan gravitasi dengan berikan medan listrik. Gerakan gabungan ini dapat dianalisis dengan fisikan klasik. Millikan menunjukkan dengan percobaan ini bahwa muatan tetesan minyak selalu merupaka kelipatan 1,6×10-19 C. Fakta ini berujung pada nilai muatan elektron sebesar 1,6 x 10-19 C.
Rasio muatan/massa partikel bermuatan yang telah diketahui selama ini sekitar 1/1000 (C/g). Ratio yang didapatkan Thomson jauh lebih tinggnilai tersebut (nilai akurat yang diterima adalah 1,76 x108 C/g), dan penemuan ini tidak masuk dalam struktur pengetahuan yang ada saat itu. Partikel ini bukan sejenis ion atau molekul, tetapi harus diangap sebagai bagian atau fragmen atom.
MARTIN (41609010051)





Lahirnya konsep sintesis
Ditulis oleh Yoshito Takeuchi pada 11-08-2008
Kimia memiliki banyak aspek, tetapi ada tiga daerah umum: studi struktur material, studi reaksi material, dan sintesis material. Dulunya dianggap bahwa sintesis lebih dan tidak terlalu teoritis empiris bila dibandingkan dengan studi struktur dan reaksi. Namun, dengan berkembangnya struktur dan reaksi, sintesis juga perlahan menjadi lebih berlandaskan teori dan tersistematisasi. Di bab ini kita akan secara sekilas melihat perkembangan terbaru sintesis modern. Bab ini diharapkan dapat memberikan pengenalan tentang peran penting sintesis dalam kimia modern.
Salah satu tujuan utama kimia adalah menciptakan material penting, atau sintesis material. Dari zaman alkemi, tujuan ini adalah tujuan terpenting yang akan dicapai. Tidak mudah untuk mencapai tujuan ini. Alkemi menyumbangkan karyanya pada lahirnya kimia modern dengan berbagi teknik eksperimen dan alat yang dikembangkannya. Teknik semacam refluks dan distilasi adalah prestasi dari kerja alkemi. Namun bagi alkemi prestasi ini bukan yang mereka cari. Mreka tidak pernah mencapai tujuan utama yang mereka canangkan mensintesis emas, walaupun beberapa mereka melaporkan kesuksesan itu.
Alasan kegagalannya jelas. Kerja mereka berdasarkan atas hipotesis yang salah: teori empat unsur Aristoteles (Bab 1). Target mereka, emas, adalah unsur, tetapi mereka menganggap sejenis senyawa dan menganggap senyawa yang mereka cari dapat diperoleh dengan mencampurkan empat unsur dalam proporsi yang tepat.
Konsep sintesis modern lahir setelah teori atom lahir dan struktur molekul dielusidasi berdasarkan teori atom. Situasi semacam ini akhirnya dicapai di pertengahan abad 19. Teori valensi Kekulé dan Couper diusulkan sekitar tahun 1858. Tidak semua kimiawan pada waktu itu siap menggunakan teori valensi Kekulé , yang dicirikan dengan penggunaan ikatan antar atom. Konsep valensi masih kabur, dan beberapa kimiawan menganggap valensi tidak lebih dari proporsi berbagai jenis atom dalam molekul.
Kimiawan Rusia Aleksandr Mikhailovich Butlerov (1828-1886) dengan semangat mendukung teori Kekulé-Couper dan mendeklarasikan bahwa satu dan hanya satu rumus kimia yang berkaitan dengan satu senyawa dan atom-atom dalam molekul diikat satu sama lain sesuai dengan teori ikatan valensi, serta menolak asumsi umum bahwa atom tersusun secara acak dalam molekul.
Menurutnya, valensi bukan hanya ukuran proporsi atom dalam molekul, valensi juga mendefinisikan pola ikatan antar atom dalam molekul. Ialah yang pertama menggunakan istilah struktur kimia di tahun 1861.
Menurut teorinya, akan ada isomer bila terdapat dua atau lebih cara atom-atom berikatan untuk satu rumus rasional. Di sekitar waktu itu, kimiawab Jerman, Adolph Wilhelm Hermann Kolbe (1818-1884) berhasl mensintesis isopropil alkohol (CH3)2CHOH dan Butlerov sendiri berhasil mensitesis t-butil alkohol (CH3)3COH. Keberhasilan ini membuktikan adanya alkohol primer dan tersier dan kemudian mengukuhkan konsep struktur kimia.
Kimiawan Perancis Michel Eugène Chevreul (1786-1889), seorang kontempori, menemukan bahwa lemak adalah senyawa asam lemah (asam karboksilat alifatik) dan gliserin, dan zat mirip lemak dapat diperoleh dari reaksi antara asam lemak dan gliserin. Berthelot menulsi buku teks “Kimia Organik” tahun 1860 yang didalamnya ia menggunakan istilah “sintesis”. Ia mendeklarasikan secara prinsip seyawa organik apapun dapat disintesis dari karbon, hidrogen, oksigen dan nitrogen.
Jadi, filosofi dasar kimia sintesis dikukuhkan di pertengahan abad 19. Secara praktis sintesis bukan berarti mudah. Di tahun 1856, seorang anak muda Inggris William Henry Perkin (1838-1907), yang juga asisten August Wilhelm von Hofmann (1818-1892) , yang waktu itu di London karena diminta membuat sistem untuk pendidikan kimia, berusaha mensintesis kuinin. Kuinin diketahui sebagai obat khusus untuk malaria.
Di waktu itu, belum ada metoda sintesis senyawa serumit kuinin dari senyawa organik sederhana. Perkin memiliki ide bahwa kuinin mungkin dapat dihasilkan dari oksidasi aliltoluidin, yang rumus rasionalnya mirip dengan kuinin. Fakta sebenarnya hal ini tidak mungkin, dan memang usaha sintesisnya gagal. Alih-alih mendapatkan kuinin, Perkin mendapatkan pewarna yang cantik, yang disebut Mauve atau Mauvein, yang kemudian menjadi pewarna sintetis pertama yang digunakan untuk keperluan praktis. Sukes tak terencana ini menumbuhkan industri kimia dengan cepat. Namun, kesukaran sintesis organik tetap tak terpecahkan.


MARTIN (41609010051)





Sistem Organik Terkendala Budaya Petani


KOMPAS/WAWAN H PRABOWO


Jumat, 26 Juni 2009 | 18:41 WIB
Laporan wartawan KOMPAS Idha Saraswati W Sejati
YOGYAKARTA, KOMPAS.com — Penerapan sistem pertanian organik di Indonesia terkendala oleh budaya petani. Selama masa revolusi hijau mereka terbiasa bercocok tanam sesuai petunjuk dalam program pemerintah sehingga kehilangan kreativitas.
Hal itu disampaikan antropolog dari School of Social and Cultural Studies, Massey University Auckland, Selandia Baru, Graeme Macrae, dalam kuliah umum Pertanian Organik dan Permasalahannya, Jumat (26/6) di Universitas Atma Jaya Yogyakarta.
Kesimpulan mengenai kendala dari faktor budaya itu ditemukan Macrae dari pengamatannya terhadap penerapan sistem pertanian organik di Ubud Bali. Menurut dia, sampai sekarang, sebagian besar petani masih enggan mencoba pola pertanian organik karena khawatir terhadap risikonya. Masalah utama kekhawatiran itu bukan terkait, baik dengan faktor ekonomis, maupun teknis, melainkan lebih karena faktor sosial budaya. Demikian dia menjelaskan.
Sebelum sistem pertanian dengan pupuk kimia diperkenalkan, petani di Bali sebenarnya telah punya pola bercocok tanam sendiri. Jejaknya bisa dilihat dalam sistem subak.
"Namun, sejak program revolusi hijau berjalan, mereka menjadi tergantung dalam hal kebutuhan benih, pupuk, pola bercocok tanam, hingga harga jual gabah. Akibatnya, saat sistem pertanian organik diperkenalkan, mereka tidak bisa merespons dengan cepat. Sangat jarang menemukan petani yang tertarik pada agrobisnis, mereka hanya tahu harga beli dan harga jual," tambah Macrae.
Ia menuturkan, sistem pertanian organik di Bali diperkenalkan pada petani oleh sejumlah ekspatriat yang tinggal di Bali. Sejak tahun 2000 sampai sekarang, baru sekitar 1 persen petani padi yang beralih ke sistem ini.
Padahal, pasar produk pertanian organik cukup menjanjikan. Di Bali saja, pasokan padi organik tidak mampu memenuhi permintaan. Permintaan terbesar memang datang dari kelompok ekspatriat dan turis asing. "Namun, semakin banyak kelas menengah atas di Bali yang mengonsumsi makanan organik karena alasan kesehatan," katanya.
MARTIN (41609010051)



Netralisasi
Ditulis oleh Yoshito Takeuchi pada 11-08-2008
Konsep paling mendasar dan praktis dalam kimia asam basa tidak diragukan lagi adalah netralisasi. Fakta bahwa asam dan basa dapat saling meniadakan satu sama lain telah dikenal baik sebagai sifat dasar asam basa sebelum perkembangan kimia modern.
a. Netralisasi
Neutralisasi dapat didefinisikan sebagai reaksi antara proton (atau ion hidronium) dan ion hidroksida membentuk air. Dalam bab ini kita hanya mendiskusikan netralisasi di larutan dalam air.
H+ + OH-–> H2O (9.33)
H3O+ + OH-–> 2H2O (9.34)
Jumlah mol asam (proton) sama dengan jumlah mol basa (ion hidroksida).
Stoikiometri netralisasi
nAMAVA = nBMBVB
jumlah mol proton jumlah mol ion hidroksida
subskrip A dan B menyatakan asam dan basa, n valensi, M konsentrasi molar asam atau basa, dan V volume asam atau basa.
Dengan bantuan persamaan di atas, mungkin untuk menentukan konsentrasi basa (atau asam) yang konsentrasinya belum diketahui dengan netralisasi larutan asam (atau basa) yang konsentrasinya telah diketahui. Prosedur ini disebut dengan titrasi netralisasi.
Contoh soal
9.5 titrasi netralisasi
0,500 g NH4Cl tidak murni dipanasakan dengan NaOH berlebih menghasilkan amonia NH3 yang diserap dalam 25,0 cm3 0,200 mol dm-3 asam sulfat. Diperlukan 5,64 cm3 NaOH 0,200 mol.dm-3 untuk menetralkan asam sulfat berlebih. Hitung kemurnian NH4Cl.
Jawab
Ingat asam sulfat adalah asam diprotik. Dengan mengaasumsikan jumlah mol amonia yang dihasilkan x m mol, jumlah mol amonia dan natrium hidroksida dua kali lebih besar dari jumlah mol asam sulfat. Jadi,
x (mmol) + 0,200 (mol dm-3) x 5,64 x 10-3 (dm3)= 2 x 0,200 (mol dm-3) x 25,0 x 10-3(dm3)
x + 1,128 = 10,0
∴ x = 8,872 (mmol)
Karena massa molar amonium khlorida adalah 52,5, 8,872 mmol ekivalen dengan 0,466 g amonium khlorida.
Jadi kemurnian sampel adalah (0,466 g/0,500 g) x 100 = 93 %.
b. Garam
Setiap asam atau h=garam memiliki ion lawannya, dan reaksi asam basa melibatkan ion-ion ini. Dalam reaksi netralisasi khas seperti antara HCl dan NaOH,

HCl + NaOH –> NaCl + H2O (9.35)
asam basa garam air
Selain air, terbentuk NaCl dari ion khlorida, ion lawan dari proton, dan ion natrium, ion lawan basa. Zat yang terbentuk dalam netralisasi semacam ini disebut dengan garam. Asalkan reaksi netralisasinya berlangsung dalam air, baik ion natrium dan ion khlorida berada secara independen sebagai ion, bukan sebagai garam NaCl. Bila air diuapkan, natrium khlorida akan tinggal. Kita cenderung percaya bahwa garam bersifat netral karena garam terbentuk dalam netralisasi. Memang NaCl bersifat netral. Namun, larutan dalam air beberapa garam kadang asam atau basa. Misalnya, natrium asetat, CH3COONa, garam yang dihasilkan dari reaksi antara asam asetat dan natrium hidroksida, bersifat asam lemah.
Sebaliknya, amonium khlorida NH4Cl, garam yang terbentuk dari asam kuat HCl dan basa lemah amonia, bersifat asam lemah. Fenomena ini disebut hidrolisis garam.
Diagram skematik hidrolisis ditunjukkan di Gambar 9.1. Di larutan dalam air, garam AB ada dalam kesetimbangan dengan sejumlah kecil H+ dan OH- yang dihasilkan dari elektrolisis air menghasilkan asam HA dan basa BOH (kesetimbangan dalam arah vertikal). Karena HA adalah asam lemah, kesetimbangan berat ke arah sisi asam, dan akibatnya [H+] menurun. Sebaliknya, BOH adalah basa kuat dan terdisosiasi sempurna, dan dengan demikian todak akan ada penurunan konsentrasi OH-. Dengan adanya disosiasi air, sejumlah H+ dan OH- yang sama akan terbentuk.
Dalam kesetimbangan vertikal di Gambar 9.1, kesetimbangan asam ke arah bawah, dan kesetimbangan basa ke arah atas. Akibatnya [OH-] larutan dalam air meningkat untuk membuat larutannya basa. Penjelasan ini juga berlaku untuk semua garam dari asam lemah dan basa kuat.

Gambar 9.1Hidrolisis garam.
Sebagai rangkuman, dalam hidrolisis garam dari asam lemah dan basa kuat, bagian anion dari garam bereaksi dengan air menghasilkan ion hidroksida.
A- + H2O –> HA + OH- (9.36)
Dengan menuliskan reaksi ini sebagai kesetimbangan, hidrolisis garam dapat diungkapkan dengan cara kuantitatif
A- + H2O HA + OH- (9.37)
Bila h adalah derajat hidrolisis yang menyatakan rasio garam yang terhidrolisis saat kesetimbangan. Tetapan kesetimbangan hidrolisis Kh adalah:
Kh = [HA][OH-]/[A-] = (csh)2/cs(1 – h) = csh2/(1 – h) (9.38)
Kh disebut tetapan hidrolisis, dan cs adalah konsentrasi awal garam. A- adalah basa konjugat dari asam lemah HA dan Kh berhubungan dengan konstanta disosiasi basanya. Akibatnya, hubungan berikut akan berlaku bila konstanta disosiasi asam HA adalah Ka: jadi,
KaKh = Kw (9.39)
Bila h ≪ 1, Ka ≒csh; h ≒√(Kh/cs). Maka konsentrasi [OH-] dan [H+] diberikan oleh ungkapan:
[OH-] = csh ≒√(csKw/Ka) (9.40)
[H+] = Kw/[OH-] ≒√(KwKa/cs) (9.41)
Karena terlibat asam lemah,
Ka/cs < 1,
∴ [H+] < √Kw = 10-7 (9.42)
Jadi, garam dari asam lemah bersifat basa. Dengan cara yang sama, [H+] garam asam lemah dan basa kuta dinyatakan dengan:
[H+] = csh ≒√(csKw/Kb) (9.43)
Karena melibatkan basa lemah,
cs/Kb > 1,
∴ [H+] > √Kw = 10-7 (9.44)
Jadi, garamnya bersifat asam.
c. Kurva titrasi
Dalam reaksi netralisasi asam dan basa, atau basa dengan asam, bagaimana konsentrasi [H+], atau pH, larutan bervariasi? Perhitungan [H+] dalam titrasi asam kuat dengan basa kuat atau sebaliknya basa kuat dengan asam kuat tidak sukar sama sekali. Perhitungan ini dapat dilakukan dengan membagi jumlah mol asam (atau basa) yang tinggal dengan volume larutannya.
Perhitungannya akan lebih rumit bila kombinasi asam lemah dan basa kuat, atau yang melibatkan asam kuat dan basa lemah. [H+] akan bergantung tidak hanya pada asam atau basa yang tinggal, tetapi juga hidrolisis garam yang terbentuk.
Plot [H+] atau pH vs. jumlah asam atau basa yang ditambahkan disebut kurva titrasi (Gambar 9.2). Mari kita menggambarkan kurva titrasi bila volume awal asam VA, konsentrasi asam MA, dan volume basa yang ditambahkan vB dan konsentrasinya adalah MB.
(1) TITRASI ASAM KUAT DAN BASA KUAT.
[1] sebelum titik ekivalen:
Karena disosiasi air dapat diabaikna, jumlah mol H+ sama dengan jumlah sisa asam yang tinggal
[H+] = (MAVA – MBvB)/(VA + vB) (9.45)
[2] Pada titik ekivalen:
Disosiasi air tidak dapat diabaikan di sini.
[H+] = √Kw = 10-7 (9.46)
[3] setelah titik ekivalen:
Jumlah mol basa berlebih sama dengan jumlah mol ion hidroksida. [OH-] dapat diperoleh dengan membagi jumlah mol dengan volume larutan. [OH-] yang diperoleh diubah menjadi [H+].
[OH-] = (MBvB – MAVA)/(VA + vB) (9.47)
[H+] = Kw/[OH-] = (VA + vB)Kw/(MBvB – MAVA) (9.48)
Kurvanya simetrik dekat titik ekivalen karena vB ≒ VA.
Titrasi 10 x 10-3 dm3 asam kuat misalnya HCl 0,1 mol dm-3 dengan basa kuat misalnya NaOH 0,1 mol dm-3 menghasilkan kurva titrasi khas seperti yang ditunjukkan dalam Gambar 9.2(a). Pada tahap awal, perubahan pHnya lambat. Perubahan pH sangat cepat dekat titik ekivalen (vB = 10 x10-3 dm3). Dekat titik ekivalen, pH berubah beberapa satuan hanya dengan penambahan beberapa tetes basa.

Gambar 9.2 Kurva titrasi: (a) Titrasi HCl dengan NaOH. Perubahan pH yang cepat di titik ekivalen bersifat khas.
(b) Titrasi CH3COOH dengan NaOH. Perubahan pH di titik ekivalen tidak begitu cepat.

Gambar 9.3 Kurva titrasi: titrasi NH3 dengan HCl.
2. TITRASI ASAM LEMAH DENGAN BASA KUAT
Hasilnya akan berbeda bila asam lemah dititrasi dengan basa kuat. Titrasi 10 x 10-3 dm3 asam asetat 0,1 mol dm-3 dengan NaOH 0,1 mol dm-3 merupakan contoh khas (Gambar 9.2(b)).
[1] Titik awal: vB = 0. pH di tahap awal lebih besar dari di kasus sebelumnya.
[H+] = MAα (9.49)
α adalah tetapan disosiasi asam asetat.
[2] sebelum titik ekivalen: sampai titik ekivalen, perubahan pH agak lambat.
[3] pada titik ekivalen (vB = 10 x 10-3 dm3): pada titik ini hanya natrium asetat CH3COONa yang ada. [H+] dapat diperoleh dengan cara yang sama dengan pada saat kita membahas hidrolisis garam.
[4] setelah titik ekivalen. [H+] larutan ditentukan oleh konsentrasi NaOH, bukan oleh CH3COONa.
Perubahan pH yang perlahan sebelum titik ekivalen adalah akibat bekerjanya buffer (bagian 9.3 (d)). Sebelum titik ekivalen, terdapat larutan natrium asetat (garam dari asam lemah dan bas kuat) dan asam asetat (asam lemah). Karena keberadaan natrium asetat, kesetimbangan disosiasi natrium asetat
CH3COOH H+ + CH3COO- (9.50)
bergeser ke arah kiri, dan [H+] akan menurun. Sebagai pendekatan [CH3COO-] = cS [HA] ≒ c0.
cS adalah konsentrasi garam, maka
[H+]cS/ c0= Ka,
∴ [H+] = (c0/cS)Ka (9.51)
Bila asam ditambahkan pada larutan ini, kesetimbangan akan bergeser ke kiri karena terdapat banyak ion asetat maa asam yang ditambahkan akan dinetralisasi.
CH3COOH H+ + CH3COO- (9.52)
Sebaliknya, bila basa ditambahkan, asam asetat dalam larutan akan menetralkannnya. Jadi,
CH3COOH + OH- H2O + CH3COO- (9.53) Jadi [H+] hampir tidak berubah.
(3) TITRASI BASA LEMAH DENGAN ASAM KUAT
Titrasi 10 x 10-3 dm3 basa lemah misalnya larutan NH3 0,1 mol dm-3 dengan asam kuat misalnya HCl 0,1 mol dm-3 (Gambar 9.3). Dalam kasus ini, nilai pH pada kesetimbangan agak lebih kecil daripada di kasus titrasi asam kuat dengan basa kuat. Kurvanya curam, namun, perubahannya cepat di dekat titik kesetimbangan. Akibatnya titrasi masih mungkin asalkan indikator yang tepat dipilih, yakni indikator dengan rentang indikator yang sempit.
(4) TITRASI BASA LEMAH (ASAM LEMAH) DENGAN ASAM LEMAH (BASA LEMAH).
Dalam titrasi jenis ini, kurva titrasinya tidak akan curam pada titik kesetimbangan, dan perubahan pHnya lambat. Jadi tidak ada indikator yang dapat menunjukkan perubahan warna yang jelas. Hal ini berarti titrasi semacam ini tidak mungkin dilakukan.
d. Kerja bufer
Kerja bufer didefinisikan sebagai kerja yang membuat pH larutan hampir tidak berubah dengan penambahan asam atau basa. Larutan yang memiliki kerja bufer disebut larutan bufer. Sebagian besar larutan bufer terbentuk dari kombinasi garam (dari asam lemah dan basa kuat) dan aam lemahnya. Cairan tubuh organisme adalah larutan bufer, yang akan menekan perubahan pH yang cepat, yang berbahaya bagi makhluk hidup.
Nilai pH larutan bufer yang terbuat dari asam lemah dan garamnya dapat dihitung dengan menggunakan persamaan berikut.
pH = pKa + log([garam]/[asam]) (9.54)
Tabel 9.2 memberikan beberapa larutan bufer.
Tabel 9.2 Beberapa larutan bufer.

Contoh soal 9.5 pH larutan bufer
Tiga larutan (a), (b) dan (c) mengandung 0,10 mol dm-3 asam propanoat (Ka = 1,80 x 10-5 mol dm-3) dan (a) 0,10 mol dm-3, (b) 0,20 mol dm-3 and (c) 0,50 mol dm-3 natrium propanoat. Hitung pH larutan.
Jawab
Substitusikan nilai yang tepat pada persamaan (9.54)
1. pH = pKa + log([garam]/[asam]) = pKa + log([0,1]/[0,1]) = pKa + log1 = 4,75
2. pH = pKa + log([0,2]/[0,1])= pKa + log 2 = 5,05
3. pH = pKa + log([0,5]/[0,1]) = pKa + log5 = 5,45
Lihat bahwa nilai ([garam]/[asam]) berubah dari 1 ke 5, tetapi pH hanya berubah sebesar 0,7.
e. Indikator
Pigmen semacam fenolftalein dan metil merah yang digunakan sebagai indikator titrasi adalah asam lemah (disimbolkan dengan HIn) dan warnanya ditentukan oleh [H+] larutan. Jadi,
HIn H+ + In- …. (9.55)
Rasio konsentrasi indikator dan konjgatnya menentukan warna larutan diberikan sebagai:
KIn = [H+][In-]/[HIn], ∴ [In-]/[HIn] = KIn/[H+] … (9.56)
KIn adalah konstanta disosiasi indikator.
Rentang pH yang menimbulkan perubahan besar warna indikator disebut dengan interval transisi. Alasan mengapa ada sedemikian banyak indikator adalah fakta bahwa nilai pH titik ekivalen bergantung pada kombinasi asam dan basa. Kunci pemilihan indikator bergantung pada apakah perubahan warna yang besar akan terjadi di dekat titik ekivalen. Di Tabel 9.3 didaftarkan beberapa indikator penting.
Tabel 9.3 Indikator penting dan interval transisinya.
Indikator interval transisi perubahan warna(asam–>basa)
Biru timol 1,2-2,8 merah –> kuning
Metil oranye 3,1-4,4 merah –> kuning
Metil merah 4,2-6,3 merah –> kuning
bromotimol biru 6,0-7,6 kuning–> biru
merah kresol 7,2-8,8 kuning –> merah
fenolftalein 8,3-10,0 tak berwarna–> merah
alizarin kuning 10,2-12,0 kuning–> merah
Contoh soal 9.6 Titrasi netralisasi campuran, bagaimana menggunakan indikator.
25 dm3 larutan mengandung NaOH dan Na2CO3 dititrasi dengan 0,100 mol.dm-3 HCl dengan indikator fenolftalein. Warna indikator hilang ketika 30,0 dm3 HCl ditambahkan. Metil oranye kemudian ditambahkan dan titrasi dilanjutkan. 12,5 dm3 HCl diperlukan agar warna metil oranye berubah. Hitung konsentrasi NaOH dan Na2CO3 dalam larutan.
Jawab
Asam karbonat adalah asam diprotik, dan netralisasi berlangsung dalam reaksi dua tahap
CO32- + H+ –> HCO3- ;
HCO3 - + H+ –> H2O + CO2
Tahap pertama netralisasi campuran NaOH-Na2CO3 tercapai saat fenolftalein berubah warna.
Perubahan warna metil oranye menandakan akhir tahap kedua netralisasi natrium karbonat.
Jadi, jumlah NaOH-Na2CO3 adalah 0,100 mol dm-3 x 30,0 x 10-3 dm3 = 3,0 x 10-3 mol
sebagaimana dinyatakan dalam tahap pertama netralisasi. Jumlah Na2CO3 adalah 0,100 mol.dm-3 x 12,5 x 10-3 dm3 = 1,25 x 10-3 mol sebagaimana dinyatakan dalam tahap kedua netralisasi. Jumlah NaOH adalah selisih antara kedua bilangan tersebut, 1,75 x 10-3 mol. Jadi
[Na2CO3] = 1,25 x 10-3 mol/25,0 x 10-3 dm3 = 0,050 mol dm-3
[NaOH] = 1,75 x 10-3 mol/25,0 x 10-3 dm3 = 0,070 mol dm-3
Latihan
9.1 Asam basa konjugat
Tuliskan reaksi disosiasi senyawa berikut, termasuk air yang terlibat, dan tandai pasangan asam basa konjugasinya. (a) asam format HCOOH, (b) asam perkhlorat HClO4
9.1 Jawab
(a) HCOOH + H2O H3O+ + HCOO-
asam1 basa2 asam konjugat2 basa konjugat 1
(b) HClO4 + H2O H3O+ + ClO4-
asam1 basa2 asam konjugat2 basa konjugat 1
9.2 Asam basa konjugat
Tetapan disosiasi pasangan asam basa konjugat adalah Ka dan Kb. Buktikan bahwa Ka x Kb = Kw Kw adalah tetapan hasil kali ion air.
9.2 Jawab
Lihat halaman yang relevan di teks.
9.3 Asam basa Lewis
Nyatakan manakah asam dan basa Lewis dalam reaksi-reaksi berikut.
(a) Cu2+ + 4NH3 Cu(NH3)42+
(b) I- + I2 I3-
(c ) Fe2+ + 6H2O Fe(H2O)63+
9.3 Jawab
(a) Cu2+ + 4NH3 Cu(NH3)42+, Cu2+ : asam Lewis, NH3: basa Lewis.
(b) I- + I2 I3-, I- : asam Lewis, I2: basa Lewis.
(c ) Fe2+ + 6H2O Fe(H2O)63+ Fe2+: asam Lewis, H2O: basa Lewis.
9.4 Konsentrasi ion hidrogen dan pH asam kuat
Asam perkhlorat adalah asam kuat, dan disosiasinya dapat dianggap lengkap. Hitung konsentrasi ion hidrogen [H+] dan pH 5,0 mol dm-3 asam ini.
9.4 Jawab
[H+] = 5,0×10-3mol dm-3; pH = -log[H+] = 2,30
9.5 Konsentrasi ion hidrogen dan pH asam lemah
Hitung konsentrasi ion hidrogen dan pH asam asetat 0,001 mol dm-3, 0,01 mol dm-3 dan 0,1 mol dm-3. Ka asam asetat pada 25°C adalah 1,75 x 10-3 mol dm-3.
9.5 Jawab
Kira-kira [H+] = √(csKa). Maka [H+] dan pH dinyatakan sebagai berikut.
Asam asetat 0,001 mol dm-3; [H+] = 1,32 x 10-4 mol dm-3, pH = 3,91. Asam asetat 0,01 mol dm-3; [H+] = 4,18 x 10-4 mol dm-3, pH = 3,39. Asam asetat 0,1 mol dm-3; [H+] = 1,32 x 10-3 mol dm-3, pH = 2,28.
9.6 Perhitungan tetapan disosiasi
Dalam larutan 0,5 mol dm-3, disosiasi asam urat C5H4N4O3 sebesar 1,6 %. Tentukan Ka asam urat.
9.6 Jawab
1,6 x 10-2 = [C5H3N4O3-]/0,5 mol dm-3,
[C5H3N4O3-]= [H+] = 8,0 x 10-3 mol dm-3. Jadi,
Ka = (8,0 x 10-3)2/0,50 = 1,28 x 10-4 mol dm-3.
9.7 Titrasi Netralisasi
Suatu detergen mengandung amonia. 25,37 g detergen dilarutkan dalam air untuk menghasilkan 250 cm3 larutan. Diperlukan 37,3 cm3 asam sulfat 0,360 mol dm-3 ketika 25,0 cm3 larutan ini dititrasi. Hitung persen massa amonia dalam detergen.
9.7 Jawab
18,0 %.
9.8 Larutan Bufer
(1) Hitung pH bufer yang konsentrasi asam formatnya HCOOH (Ka = 1,8 x10-4 mol dm-3) 0,250 mol dm-3, dan konsentrasi natrium format HCOONa-nya 0,100 mol dm-3.
(2) Anggap 10 cm3 NaOH 6,00 x 10-3 mol dm-3 ditambahkan ke 500 cm3 larutan bufer ini. Hitung pH larutan setelah penambahan NaOH.
9.8 Jawab
(1) [H+] = 4,5 x 10-4 mol dm-3, pH = 3,35. (2) Jumlah mol HCOOH, OH- dan HCOO- sebelum dan sesudah penambahan NaOH ditunjukkan dalam tabel berikut.

m mol HCOOH OH- HCOO
Sebelum 125 60 50
sesudah 65 0 110
Perhatikan setelah penambahan volume larutan menjadi 510 cm3. 1,8 x 10-4 mol dm-3 = ([H+] x 0,216)/(0,128), [H+] = 1,06 x 10-4 mol dm-3, pH = 3,97 Perubahan pH agak kecil walaupun sejumlah cukup besar basa kuat ditambahkan.
MARTIN (41609010051)




Struktur molekul sederhana
Ditulis oleh Yoshito Takeuchi pada 11-08-2008
Ikatan ionik dibentuk oleh tarikan elekrostatik antara kation dan anion. Karena medan listrik suatu ion bersimetri bola, ikatan ion tidak memiliki karakter arah. Sebaliknya, ikatan kovalen dibentuk dengan tumpang tindih orbital atom. Karena tumpang tindih sedemikian sehingga orbital atom dapat mencapai tumpang tindih maksimum, ikatan kovalen pasti bersifat terarah. Jadi bentuk molekul ditentukan oleh sudut dua ikatan, yang kemudian ditentukan oleh orbital atom yang terlibat dalam ikatan.
Paparan di atas adalah pembahasan umum struktur molekul. Struktur molekul sederhana dapat disimpulkan dari pertimbangan sterekimia sederhana yang akan dijelaskan di bab ini.
a. Teori tolakan pasangan elektron valensi
Di tahuan 1940, Sidgwick mengusulkan teori yang disebut dengan Teori tolakan pasangan elektron valensi [valence shell electron pair repulsion (VSEPR)], yang karena sifat kualitatifnya sangat mudah dipahami. Teorinya sangat cocok untuk mempredksi struktur senyawa berjenis XYm. Menurut teori ini, jumlah pasangan elektron menentukan penyusunan pasangan-pasangan elektron di sekitar atom pusat molekul. Terdapat gaya tolak elektrostatik antara dua pasangan elektron yang cenderung menolak orbital atom sejauh mungkin satu sama lain. Karena pasangan elektron menempati orbital atom, pasangan elektron bebas juga mempunyai dampak yang sama dengan pasangan elektron ikatan. Dengan kata lain, pasangan elektron bebas dan pasangan elektron ikatan juga tolak menolak sejauh mungkin.
SENYAWA DENGAN ATOM PUSAT DIVALEN
Menurut teori VSEPR, dua pasangan elektron yang dimiliki atom pusat divalen akan terpisah sejauh mungkin bila sudut ikatannya 180°. Dengan kata lain, molekulnya akan memiliki struktur linear. Faktanya, berilium khlorida BeCl2, dengan atom pusat divalen, adalah molekul linear . Seperti akan didiskusikan kemudian, beberapa senyawa seperti karbon dioksida O=C=O dan alena H2C=C=CH2 juga linear seolah memiliki atom pusat divalen.
SENYAWA DENGAN ATOM PUSAT TRIVALEN
Bila teori VSEPR berlaku juga untuk senyawa dengan atom pusat trivalen seperti boron trikhlorida BCl3, sudut ikatan ∠Cl-B-Cl akan bernilai 120° dengan emapt atom itu berada dalam bidang yang sama. Struktur trigonal planar juga diamati di timah khlorida, SnCl3. Catat juga bahwa struktur segitiga juga diamati di etilena H2C=CH2, ion nitrat NO3 dan sulfur dioksida SO2.
SENYAWA DENGAN ATOM PUSAT TETRAVALEN
Teori karbon tetrahedral diusulkan oleh kimiawan Belanda Jacobus Henricus van’t Hoff (18521911) dan kimiawan Perancis Joseph Achille Le Bel (1847-1930), yang menyempurnakan teorinya hampir pada saat yang bersamaan. Kesimpulan yang sama juga dapat secara otomatis didapatkan dari teori VSEPR. Misalnya untuk metana, struktur yang akan memiliki tolakan antar pasangan elektron yang minimal didapatkan untuk geometri tetrahedron dengan sudut 109,5°, yang jelas lebih besar dari bujur sangakar yang bersudut 90°. Menariknya ion amonium NH4+ dengan atom nitrogen sebagai atom pusat juga tetrahedral seperti metana. Bila pasangan elektron bebas juga dihitung, atom nitrogen dari amonia NH3 dan atom oksigen dalam air H2O juga dapat dianggap
tetravalen. Namun di molekul-molekul ini tidak didapat tetrahedral sempurna, sudut ikatan ∠HNH adalah 106° dan ∠H-O-H adalah 104,5°. Fakta ini menyarankan hubungan kualitatif berikut.
Kekuatan relatif tolakan
Pasangan elektron bebas (PEB)-PEB > PEB- Pasangan elektron ikatan (PEI) > PEI-PEI Beberapa ion poliatomik semacam SO42- dan SO32- juga memiliki struktur tetrahedral.
SENYAWA DENGAN VALENSI LEBIH TINGGI DARI EMPAT
Struktur senyawa dengan atom pusat memiliki valensi lebih besar dari empat juga dapat dijelaskan dengan teori VSEPR. Senyawa pentavalen memiliki struktur trigonal bipiramidal. Senyawa khas jenis ini adalah fosfor pentakhlorida PCl5. Senyawa dengan atom pusat heksavalen berstruktur oktahedral, yang identik dengan bujur sangkar bipiramid. Contoh yang baik adalah belerang heksafluorida SF6. Dalam kasus senyawa heptavalen, situasinya sama dan strukturnya adalah pentagonal bipiramid.
Ketika menggunakan teori ini, dalam senyawa yang strukturnya ditentukan pasangan elektron bebas harus diikutsertakan sebagai bagian pasangan elekron yang menentukan struktur. Misalnya untuk IF5 dan ICl4 hal ini sangat penting. Di Gambar 4.1 ditunjukkan beberapa struktur senyawa khas.

(c) segitiga bipiramid PCl5; (d) oktahedron SF6.
Latihan: Prediksi struktur berdasarkan teori VSEPR Prediksikan struktur spesi kimia berikut dengan teori VSEPR: (a) SO2, (b) SO3 (c ) SO42-
Jawab: (a) segitiga, (b) piramidal , (c ) tetrahedral
b. Hibridisasi orbital atom
Diharapkan bahwa berilium khlorida BeCl2 dan timah (II) khlorida SnCl2 akan memiliki struktur yang mirip karena memiliki rumus molekul yang mirip. Namun, ternyata senyawa pertama berstruktur linear sedang yang kedua bengkok. Hal ini dapat dijelaskan dengan perbedaan orbital atom yang digunakan. Bila elektron-elektron mengisi orbital atom mengikuti prinsip Aufbau, elektron akan mengisi orbital atom yang berenergi terendah. Dua elektron diizinkan mengisi satu orbital. Menurut prinsip Pauli, tidak ada elektron yang memiliki satu set bilangan kuantum yang tepat sama (Bab 2.4 (d)). Masalah yang timbul adalah akan diletakkan di mana elektron ke-empat atom karbon. Telah ditetapkan bahwa konfigurasi elektron terendah atom adalah konfigurasi dengan jumlah elektron tak berpasangan maksimum dan masih tetap diizinkan oleh aturan Pauli dalam set orbital dengan energi yang sama (dalam kasus karbon adalah tiga orbital 2p). Dalam kasus ini awalnya semua elektron akan memiliki bilangan kuantum spin yang sama (yakni, +1/2 atau -1/2) (Gambar 4.2).

Berilium adalah atom dengan dua elektron valensi dan konfigurasi elektron (1s22s2). Agar berilium membentuk ikatan sebagai atom divalen, orbital 2s dan 2p harus membentuk pasangan orbital terhibridisasi sp. Karena kedua orbital hibrida sp membentuk sudut ikatan 180°, BeCl2 dengan demikian linear.
Mirip dengan itu, boron yang memiliki tiga elektron valensi dan konfigurasi elektron 1s22s22p1; atau secara sederhana ditulis 1s22s22p. Untuk membentuk ikatan dengan valensi tiga, konfigurasi elektronnya harus (1s22s2px2py). Satu orbital 2s dan dua orbital 2p akan membentuk orbital terhibridisasi sp2. Karena sudut ikatan antara dua orbital hibrida sp2 adalah 120°, BCl3 berstruktur segitiga.
Dalam kasus senyawa karbon, strukturnya dijelaskan dengan mengasumsikan empat orbital sp3 ekuivalen terbentuk dari satu orbital 2s dan tiga orbital 2p. Atom karbon memiliki empat elektron valensi, dan konfigurasi elektronnya adalah 1s22s22p2, dan untuk membentuk atom tetravalen, konfigurasi elektronnya harus berubah menjadi (1s22s2px2py2pz). Dengan hibridisasi, empat orbital hibrida sp3 yang ekuivalen akan terbentuk. Sudut ikatan yang dibuat oleh dua orbital hibrida sp3 adalah 109,5° (sudut tetrahedral). Inilah alasan mengapa metana berstruktur tetrahedral.
Untuk kasus senyawa nitrogen, amonia NH3 misalnya, empat dari lima elektron valensi atom nitrogen akan menempati empat orbital hibrida sp3 seperti ditunjukkan di Gambar 4.3. Satu elektron valensi yang tersisa akan menempati satu orbital hibrida yang telah diisi satu elektron. Jadi spin elektron kedua ini harus berlawanan dengan spin elekron pertama. Akibatnya atom nitrogen akan trivalen dengan satu pasangan elektron bebas.

Dalam kasus fosfor, ada dua kasus. Dalam satu kasus atom fosfornya trivalen dengan satu pasang elektron bebas seperti nitrogen, dan di satu kasus lain fosfornya pentavalen dengan orbital hibrida dsp3. Fosfor pentavalen memiliki struktur trigonal bipiramidal. Ion kompleks dengan ion nikel atau kobal sebagai atom pusat berkoordinasi enam dengan struktur oktahedral.
Sebagaimana didiskusikan di atas, baik teori VSEPR maupun hibridisasi orbital atom akan memberikan kesimpulan struktur molekul dan ion yang sama. Walaupun teori VSEPR hanya bergantung pada tolakan antar pasangan elektron, dan teori hibridisasi memberikan justifikasi teoritisnya.
MARTIN (41609010051)

0 Komentar:

Posting Komentar

Berlangganan Posting Komentar [Atom]

<< Beranda