k13tiumb

Senin, 23 November 2009

SPEKTROSKOPIK NMR

Bagian ini menerangkan tentang spektrum proton RMI dan bagaimana spektrum tersebut dapat menjelaskan kedudukan atom-atom hidrogen dalam molekul organik.
Atom hidrogen sebagai magnet kecil

Jika anda mempunyai suatu kompas jarum, biasanya akan mengarah pada medan magnet bumi dengan arah utara. Jika jarum kompas tersebut anda putar dengan jari sehingga menunjukkan arah selatan – arah yang berlawanan dengan medan magnet bumi. Posisi ini sangat tidak stabil karena berlawanan dengan arah medan magnet bumi, dan jika anda membiarkannya jarum akan segera kembali ke posisi semula yang lebih stabil.

Inti hidrogen juga mempunyai perilaku seperti magnet kecil dan inti-inti hidrogen dapat juga diatur arahnya agar sesuai dengan arah medan magnet luar atau berlawanan dengan arah medan magnet luar. Arah yang berlawanan dengan medan adalah tak stabil (energinya tinggi). Ini memungkinkan untuk mengubah arahnya dari yang lebih stabil ke kurang stabil dengan memberikan energi yang sesuai.

Energi yang dibutuhkan untuk mengubahnya tergantung pada kekuatan medan magnet luar yang digunakan, tetapi biasanya dalam kisaran gelombang radio – pada frekuansi antara 60 – 100 MHz. (frekuansi radio BBC 4 adalah diantara 92-95 MHz!)

Hal ini memungkinkan untuk mendeteksi hubungan antara gelombang radio pada frekuensi tertentu dengan perubahan orientasi proton sebagai suatu puncak dalam grafik. Perubahan proton dari satu arah ke arah lain oleh gelombang radio disebut dengan kondisi resonansi.

Pengaruh lingkungan kimia atom hidrogen

Mungkinkah kita mendapatkan suatu proton yang terisolasi, kenyataannya proton mempunyai sesuatu yang mengelilinginya – terutama elektron. Adanya elektron ini akan mengurangi pengaruh medan magnet luar yang dirasakan oleh inti hidrogen.

Misalkan anda menggunakan frekuensi radio 90 MHz, dan anda mengatur besarnya medan magnet sehingga suatu proton yang terisolasi dalam kondisi resonansi.

Jika anda mengganti proton yang terisolasi dengan proton yang terhubung dengan sesuatu, proton tidak akan merasakan pengaruh yang penuh dari medan luar dan akan berhenti beresonansi(berubah dari satu arah magnetik ke arah yang lain). Kondisi resonansi tergantung pada adanya kombinasi yang tepat antara medan magnet luar dan frekuensi radio.

Bagaimanakah anda mengembalikan kondisi resonansi? Anda dapat sedikit meningkatkan medan magnet luar untuk mengimbangi pengaruh elektron.

Misalnya anda menghubungkan hidrogen dengan sesuatu yang lebih elektronegatif. Elektron dalam ikatan akan makin menjauh dari inti hidrogen, sehingga pengaruhnya terhadap medan magnet di sekitar hidrogen akan berkurang.

Untuk mengembalikan hidrogen pada kondisi resonansi, anda harus sedikit meningkatkan medan magnet luar untuk mengimbangi pengaruh elektron – tetapi tidak sebanyak jika hidrogen berada didekat atom X.

Ciri-ciri spektrum RMI

Spektrum RMI yang sederhana adalah seperti berikut:

Puncak

Pada gambar terdapat dua puncak karena ada dua lingkungan hidrogen yang berbeda – dalam gugus CH3 dan gugus COOH yang mengandung oksigen. Mereka berada pada posisi yang berbeda dalam spektrum karena membutuhkan medan magnet luar yang sedikit berbeda untuk menyebabkannya beresonansi pada frekuensi radio tertentu.

Ukuran kedua puncak memberikan informasi yang penting, yaitu banyaknya atom hidrogen dalam tiap-tiap lingkungan. Bukan tinggi puncaknya tetapi perbandigan luas area di bawah puncak. Jika anda dapat menghitung luas area di bawah puncak pada diagram di atas, anda akan mendapatkan perbandingannya 3 (untuk puncak yang besar) dan 1 (untuk yang kecil).

Perbandingan 3:1 menunjukkan banyaknya atom hidrogen dalam dua lingkungan yang berbeda – hal ini sesuai untuk CH3COOH.

Perlunya standar sebagai pembanding – TMS

Sebelum kita menjelaskan makna skala pada posisi horisontal, kita akan menjelaskan tentang titik nol - pada bagian kanan skala. Nol adalah titik dimana anda akan mendapatkan suatu puncak yang disebabkan oleh atom-atom hidrogen dalam tetrametilsilan – biasanya disebut dengan TMS. Setiap pembacaan spektrum RMI akan dibandingkan dengan TMS ini.

Anda akan menemukan puncak pada beberapa spektra RMI yang ditimbulkan oleh TMS (pada nol), dan yang lainnya akan menjauhi puncak TMS ke sebelah kiri. Pada dasarnya, jika anda akan menganalisis spektrum dengan suatu puncak pada nol, anda dapat mengabaikannya karena itu adalah puncak dari TMS.

TMS dipilih sebagai standar karena beberapa alasan, diantaranya:
• TMS mempunyai 12 atom hidrogen yang semuanya memiliki lingkungan kimia yang sama. Mereka terikat oleh atom yang sama dengan cara yang sama sehingga tidak hanya menghasilkan puncak tunggal tetapi juga puncak yang kuat (karena ada banyak atom hidrogen).
• Hidrogen pada senyawa ini lebih terlindungi dibandingkan pada senyawa lain karena adanya elektron-elektron ikatan C-H. Ini artinya inti hidrogen lebih terlindungi dari medan magnet luar, dan anda harus meningkatkan medan magnet untuk membawa hidrogen ini kembali ke kondisi resonansinya.
Pengaruh dari hal ini adalah TMS menghasilkan puncak yang ekstrim pada sisi kanan. Dan puncak lain akan muncul di sebelah kirinya.

Pergeseran kimia

Skala horisontal ditunjukkan sebagai (ppm). dinamakan pergeseran kimia/chemical shift dan dihitung dalam bagian per juta/parts per million – ppm.

Suatu puncak dengan pergeseran kimia, misalnya 2.0 artinya atom-atom hidrogen yang memunculkan puncak tersebut memerlukan medan magnet 2 juta lebih kecil dari medan yang dibutuhkan oleh TMS untuk menghasilkan resonansi.

Suatu puncak pada pergeseran kimia 2.0 dikatakan mempunyai medan lebih rendah dari TMS (downfiled).

Pelarut untuk spektroskopi RMI

Spektra RMI biasanya ditentukan dari larutan substansi yang akan dianalisis. Untuk itu pelarut yang digunakan tidak boleh mengandung atom hidrogen, karena adanya atom hidrogen pada pelarut akan mengganggu puncak-puncak spektrum.

Ada dua cara untuk mencegah gangguan oleh pelarut. Anda dapat menggunakan pelarut seperti tetraklorometana, CCl4, yang tidak mengandung hidrogen, atau anda dapat menggunakan pelarut yang atom-atom hidrogennya telah diganti dengan isotopnya, deuterium, sebagai contoh CDCl3 sebagai ganti CHCl3. Semua spektrum RMI pada bagian ini menggunakan CDCl3 sebagai pelarut.

Atom-atom deuterium mempunyai sifat-sifat magnetik yang sedikit berbeda dari hidrogen, sehingga mereka akan menghasilkan puncak pada area spektrum yang berbeda.

0 Komentar:

Posting Komentar

Berlangganan Posting Komentar [Atom]

<< Beranda